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Introduction

Machine learning, classical AI (Symbolic)

High dimensional problems (low dimensional)

Deep architectures in machine learning
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Introduction

Deep supervised learning: statistical mechanics inverse problem with
assigned boundary conditions

Euristically: non convex problem, very large (high entropy!) local
minima

Use a class of tractable models (Boltzmann Machines) and aim at
their exact solutions

Investigate their architectural constraints

...
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Definition of the DBM

We consider a statistical mechanics model composed by

N binary Ising spins

arranged over K layers L1, . . . , LK of sizes N1, . . . ,NK respectively
with

∑K
p=1 Np = N

spins in the layer Lp interact with all those in the layer Lp−1, Lp+1

and only with them

the weights connecting layers Lp and Lp+1 are Np × Np+1 real valued
i.i.d. random couplings sampled from a standard Gaussian distribution
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Definition of the DBM

Layer 1 Layer 2 Layer K

...

Thursday, 8 August 19

Schematic representation of a DBM with K layers. Each circle represents a
spin variable while all the interactions are drawn among spins in adjacent
layers (but there are no intra-layer interactions)
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Themodynamic limit and form factors

We will focus on the properties of the DBM in the thermodynamic limit,
namely when N →∞ so

- we denote by ΛN ≡ (N1, . . . ,NK ) and we assume for every p = 1, . . . ,K

that the relative sizes
Np

N , that we refer to as form factors, of the layers
converge in the large volume limit:

λ
(N)
p ≡ Np

N
−−−−→
N→∞

λp ∈ [0, 1]

- we denote by λ = (λ1, . . . , λK ) the relative sizes in the large volume
limit. Notice that

∑K
p=1 λp = 1
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Hamiltonian of the DBM

Definition

The random Hamiltonian (or cost function to keep a machine learning
jargon), of a DBM is

HΛN
(σ) = −

√
2√
N

K−1∑
p=1

∑
(i ,j)∈Lp×Lp+1

J
(p)
ij σiσj

where J
(p)
ij , (i , j) ∈ Lp × Lp+1, p = 1, . . . ,K − 1 is a family of i.i.d.

standard Gaussian random variables

Remark: one can also consider (random) external fields
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Overlap and covariance

Notice that HΛN
is a gaussian process on {±1}N with covariance

EHΛN
(σ)HΛN

(τ) = 2N
K−1∑
p=1

λ
(N)
p λ

(N)
p+1 qLp(σ, τ) qLp+1(σ, τ)

where

Definition

Given two spin configurations σ, τ ∈ {±1}N , for every p = 1, . . . ,K we
define the overlap over the layer Lp as

qLp(σ, τ) =
1

Np

∑
i∈Lp

σi τi ∈ [−1, 1] .
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Partition function and thermodynamic pressure of a DBM

Definition

Given β > 0, the random partition function is

ZΛN
(β) =

∑
σ∈{−1,1}N

e−β HΛN
(σ) .

We call random pressure density the quantity
1

N
logZΛN

(β)
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Self averaging of the pressure

Main question: properties of 1
N logZΛN

(β) as N →∞

First key property: self averaging

lim
N→∞

1

N
logZΛN

(β) = lim
N→∞

pDBM
ΛN

(β) a.s.

where

pDBM
ΛN

(β) ≡ 1

N
E logZΛN

(β)

is called quenched pressure.
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Main idea

The main idea is to construct an interpolation between a DBM with K
layers and K independent Sherringhton-Kirkpatrick models

Given a = (ap)1≤p≤K−1 ∈ (0,∞)K−1, for every p = 1, . . . ,K we consider

an SK model of size Np at inverse temperature β

√
λ

(N)
p θp(a) , where we

set 
θ1(a) ≡ a1

θp(a) ≡ 1

ap−1
+ ap if p = 2, . . . ,K − 1

θK (a) ≡ 1

aK−1

.
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Main result

Theorem

The quenched pressure of the DBM satisfies the following lower bound

pDBM
ΛN

(β) ≥
K∑

p=1

λ
(N)
p pSKNp

(
β

√
λ

(N)
p θp(a)

)
− β2

2

K∑
p=1

(
λ

(N)
p

)2
θp(a) +

+ β2
K−1∑
p=1

λ
(N)
p λ

(N)
p+1

for any choice of a = (ap)1≤p≤K−1 ∈ (0,∞)K−1
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Main result

Corollary

lim inf
N→∞

pDBM
ΛN

(β) ≥

sup
a∈(0,∞)K−1


K∑

p=1

λp pSK
(
β
√
λp θp(a)

)
− β2

2

K∑
p=1

λ2
p θp(a)

 +

+ β2
K−1∑
p=1

λpλp+1 .
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The annealed regime

Under what conditions the model is in the annealed state? Annealed
means structurally convex

Consider a DBM with K = 2, 3, 4 layers and define

AK =
{

(β, λ) : 4β4 ≤ φK (λ)
}
,

where we set

φ2(λ) ≡ 1

λ1λ2

φ3(λ) ≡ 1

λ1λ2 + λ2λ3

φ4(λ) ≡ min{t > 0 : 1− t (λ1λ2 + λ2λ3 + λ3λ4) + t2 λ1λ2λ3λ4 = 0} .
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The annealed regime

Theorem

If (β, λ) ∈ AK then there exists

lim
N→∞

pDBM
ΛN

(β) = lim
N→∞

1

N
logEZΛN

(β) = log 2 + β2
K−1∑
p=1

λpλp+1 .
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The annealed regime

Some observation on the previous condition. What can we do to squeeze
the annealed reagime as much as possible?

β ≤ 1 the DBM is in the annealed regime for any choice of λ .

the infimum of φK (λ) is reached for
λ1 = λ2 = 1

2 if K = 2

λ2 = 1
2 , λ1 + λ3 = 1

2 if K = 3

(λ4 = 0, λ2 = 1
2 , λ1 + λ3 = 1

2 ) or

(λ1 = 0, λ3 = 1
2 , λ2 + λ4 = 1

2 ) if K = 4

.
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A replica symmetric approximation

We say that the model is replica symmetric if the overlap is self averaging;
what is the replica symmetric solution of a DBM model? This is important
because in DL we know that the algorithms obtaining good classification
performances are of RS type: belief propagation etc, and the local minima
are wide, large entropy states.

The quenched pressure density of the model is now

pDBM
ΛN

(β, h) ≡ 1

N
E log

∑
σ

exp

(
− βHΛN

(σ) +
K∑

p=1

∑
i∈Lp

h
(p)
i σi

)
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The replica symmetric approximation

Definition

Given y = (yp)p=1,...,K ∈ [0,∞)K the replica symmetric functional is
defined as

PRS
ΛN

(y , β, h) ≡
K∑

p=1

λ
(N)
p Ez,h log cosh

(
β
√

2 qp(λ, y) z + h(p)
)

+ β2
K−1∑
p=1

λ
(N)
p λ

(N)
p+1 (1− yp) (1− yp+1) + log 2

where qp(λ, y) =
√
λ

(N)
p−1 yp−1 + λ

(N)
p+1 yp+1 and

z is a standard Gaussian random variable independent of h(1), . . . , h(p).
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The replica symmetric approximation

The previous definition is motivated by the following sum rule:

pDBM
ΛN

(β, h) = PRS
ΛN

(y , β, h) − β2

∫ 1

0

〈
RN

〉
N,t

dt ,

where 〈 · 〉N,t denotes the quenched Gibbs expectation associated to a
suitable interpolating Hamiltonian and for every σ, τ ∈ {±1}N

RN(σ, τ) ≡
K−1∑
p=1

λ
(N)
p λ

(N)
p+1

(
qLp(σ, τ)− yp

) (
qLp+1(σ, τ)− yp+1

)
.
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Stability condition for annealing

Stationary points of PRS
ΛN

(y , β, h) satisfy the following system of
self-consistent equations:

yp = Ez tanh2
(
β
√

2
√
λp−1yp−1 + λp+1yp+1 z + hp

)
∀ p = 1, . . . ,K .

Now if we assume zero external field then y = 0 is a solution. Moreover

PRS(y = 0, β, h = 0, λ) = log 2 + β2
K−1∑
p=1

λpλp+1 .
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Stability condition for annealing

A natural question is to ask for the conditions on β, λ that makes y = 0
stable

For a DBM with K = 2, 3, 4 layers one can prove that

The region of parameters (β, λ) such that the annealed solution y = 0 is
stable coincide with the interior of the region AK .
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What’s next?

Need of interdisciplinary collaborations

Need of interdisciplinary educational programs

Need of an efficient communication to the public
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