
Laplacian Smoothing Gradient Descent

Stan Osher’s Group 1

Dept of Math, UCLA

1Thanks to professor Andrea Bertozzi’s group for helping us.
0/55

Modern Machine Learning - Nonconvex Optimization
Many machine learning models are nonconvex:

I K-means clustering

I Gaussian Mixture Model

I Deep Learning

I ...

Figure: Landscape of the loss functions for ResNet-56. Left: without skip
connection; right: with skip connection.

Li et al, Arxiv1712.09913, 2017.
1/55

Modern Machine Learning - Nonconvex Optimization

Given a model
y = f (x,w),

and training data {X ,Y }. We want to train the model by
minimizing the empirical risk function

L(X ,Y ,w)
.

= L(w).

w is usually trained by stochastic gradient descent

wk+1 = wk − γ ∂L(X̃ , Ỹ ,wk)

∂w
,

where γ is learning rate, {X̃ , Ỹ } is a random mini-batch of training
data {X ,Y }

2/55

Gradient Descent - Good Landscape

3/55

Gradient Descent - Bad Landscape

4/55

SGD’s Magic

Flat minima generalize better than sharp minima.
Hochreiter, et al, Neural Comput, 1997
Dinh, et al, arXiv:1703.04933, 2017
Keskar, et al, arXiv:1609.04836, 2017

Theory of uniform stability.
Bousquet, et al, JMLR, 2002
Hardt, et al, ICML, 2016

5/55

How to Circumvent Sharp Minima?

Problem: Find the flat minima of the empirical loss function
L(w), which is highly nonconvex.

Consider the HJ-PDE with L(w) as its initial condition{
ut + 1

2

〈
∇wu, (I − σ∆)−1∇wu

〉
= 0, (w, t) ∈ Ω× [0,∞)

u(w, 0) = L(w), w ∈ Ω
(1)

where I and ∆ are the identity and Laplacian operators,
respectively. σ is a nonnegative parameter.

By Hopf-Lax formula, the unique viscosity solution is

u(w, t) = inf
v

{
L(v) +

1

2t

〈
v −w, (I − σ∆)(v −w)

〉}
.

6/55

Convexification
The viscosity solution ut(w) := u(w, t) convexifies w by bringing
down the local maxima while retaining the wide minima. As
illustrated in the following figure.

Figure: Convexification of L(w) = ‖w‖2(1 + 0.5 sin(2π‖w‖)
)

by Laplacian smoothing (viscosity solutions of
HJ-PDE Eq.(1)). The plot shows the cross section of a 5-D problem with σ = 1 and different t values.

7/55

Laplacian Smoothing Gradient Descent

For a convex loss function L(w), it can be shown that standard
GD on u(w, t) is equivalent to the following Laplacian smoothing
implicit GD on L(w), i.e.,

wk+1 = wk − γ(I − σ∆)−1∇ut(wk)

is equivalent to

wk+1 = wk − γ(I − σ∆)−1∇L(wk+1),

where γ is learning rate.

8/55

Laplacian Smoothing Gradient Descent

How to implement the implicit update?
Chaudhari et al, arXiv:1704.04932, 2017

We relax implicit scheme to explicit and apply to nonconvex
optimization.

wk+1 = wk − γ(I − σ∆)−1∇L(wk)
.

= wk − γ∇σL(wk).

Laplacian Smoothing Gradient Descent (LS-GD)

9/55

An Intuitive Explanation - Not the Whole Story

Figure: Preconditioning the gradient to avoid slow progress in shallow
directions.

10/55

PyTorch and Tensorflow Implementation

Discrete form of ∇σ with periodic boundary condition:

inv




1 + 2σ −σ 0 . . . 0 −σ
−σ 1 + 2σ −σ . . . 0 0
0 −σ 1 + 2σ . . . 0 0
.
−σ 0 0 . . . −σ 1 + 2σ




I Thomas algorithm + Sherman Morrison formula.

I FFT: Given a vector a, a smoothed vector b can be obtained
by solving (I − σ∆)−1a = b. This is equivalent to
a = b− σ∆ · b, or a = b− σv ∗ b, where
v = (−2, 1, 0, · · · , 0, 1) and ∗ is the convolutional operator.
Hence, we have

b = ifft

(
fft(a)

1− σ · fft(v)

)
,

11/55

Circumvent Sharp Minima - An Illustration
Consider

f (x, y, z) = −4e
−
(

(x−π)2+(y−π)2+(z−π)2
)
− 4

∑
i/2

cos(x) cos(y)e
−β

(
(x−r sin(i/2)−π)2+(y−r cos(i/2)−π)2

)

(2)

summation over {i ∈ N|0 ≤ i < 4π}, r = 1, β = 1√
500

.

(a) (b)

Figure: Demo of gradient descent with raw and Laplacian smoothed gradients. Panel (a) depicts a slice of the
function given by Eq.(2); panel (b) shows the paths by using two different gradients, where red and black dots are
the points on the paths with raw and smoothed gradients, respectively. The learn rate in the gradient descent is set
to be 0.02 and the smooth parameter σ = 1.0.

12/55

Comparison with Other Optimization Algorithms

Saddle point problem

f (x , y) = 3(x2 − y2).

Rosenbrock function

f (x , y) = (1− x)2 + 100(y − x2)2.

13/55

Comparison with Other Optimization Algorithms - Escape
Saddle Point

(LS-SGD escape saddle point)

14/55

movie1_Valley.avi
Media File (video/avi)

Comparison with Other Optimization Algorithms - Faster
Convergence

(LS-SGD converge faster)

15/55

movie1_Rosenbrock.avi
Media File (video/avi)

Comparison with Other Optimization Algorithms - Larger
Learning Rate

(LS-SGD converges with large learning rate)

16/55

movie3_Rosenbrock.avi
Media File (video/avi)

Faster Convergence for High Dimensional Rosenbrock
Function -2D

17/55

Faster Convergence for High Dimensional Rosenbrock
Function -100D

18/55

Faster Convergence for High Dimensional Rosenbrock
Function -1000D

19/55

Softmax Regression

For a given instance x, the probability belonging to k-th class is
modeled by

P(y = k |x,w) =
exp (wT

k · x)∑K
j=1 exp (wT

j · x)
,

where w = (w1,w2, · · · ,wK).

To learn the weights w, we consider the cross-entropy loss function
(maybe with regularization terms)

L(w) =
∑
i

− log(P(y = yi |xi ,w)),

where the sum is taken over the training data {(xi , yi)}.

20/55

SGD v.s. LS-SGD - Softmax Regression

Consider the MNIST hand written digits recognition by using the
Softmax regression. The models are trained by running 100 epochs
of SGD and LS-SGD respectively on the 60000 training instances
with batch size 100 and learning rate 0.05.

σ = 0 σ = 0.2 σ = 0.5 σ = 0.8

Figure: The histogram of generalization accuracies of the softmax
regression model trained with LS-SGD over 100 independent experiments
by using different σ.

21/55

SGD v.s. LS-SGD - Softmax Regression

Table: Accuracies of the softmax regression model trained with LS-SGD.
Statistics over 100 independent experiments for each σ. Note, σ = 0
represents SGD.

σ Min Max Average Variance σ Min Max Average Variance

0.0 0.899 0.923 0.916 1.81e-5

0.1 0.906 0.924 0.918 1.10e-5 0.6 0.917 0.925 0.921 3.17e-6

0.2 0.907 0.924 0.919 1.06e-5 0.7 0.915 0.924 0.921 3.30e-6

0.3 0.908 0.924 0.920 8.16e-6 0.8 0.915 0.924 0.921 2.73e-6

0.4 0.910 0.925 0.920 7.48e-6 0.9 0.917 0.924 0.920 2.80e-6

0.5 0.912 0.924 0.920 4.21e-6 1.0 0.914 0.924 0.920 3.86e-6

22/55

LeNet5

Figure: Architecture of LeNet5.

LeCun et al, Proc. IEEE, 1998

23/55

SGD v.s. LS-SGD - LeNet5
Consider MNIST image recognition by LeNet5, where

LeNet : input28×28 → conv20,5,2 → conv50,5,2 → fc512 → softmax.

We train the model by running 100 epochs LS-SGD with learning
rate 0.05 and batch size 100.

σ = 0 σ = 0.5 σ = 1.0 σ = 1.5

Figure: The histogram of generalization accuracies of the LeNet5 on
MNIST trained with LS-SGD over 100 independent experiments by using
different σ. No momentum, weight decay, or any other techniques is used
to improve the generalization.

24/55

SGD v.s. LS-SGD - LeNet5

SGD LS-SGD with σ = 1.0

Figure: The histogram of generalization accuracy of the LeNet5 on
MNIST trained with LS-SGD over 100 independent experiments by using
different σ. The Nesterov momentum and weight decay are used to
boost the performance.

Nesterov, 1983

25/55

LS-SGD is Suitable for Small Batch Size
The importance of using small batch size.

Wu and He, Arxiv1803.08494, 2018.

Figure: Generalization accuracy of LeNet5 trained with different batch
sizes by SGD and LS-SGD.

26/55

ResNet

Figure: ResNet build block.

He et al, CVPR, 2016

27/55

SGD v.s. LS-SGD - ResNet
On Cifar10, we compare the performance of LS-SGD and SGD on ResNet with
the pre-activated ResNet56. We take the same training strategy as reported in
the original paper, except that we run 200 epochs with the learning rate
decayed by a factor of 5 after every 40 epochs. For ResNet, instead of applying
LS-SGD for all epochs. We only use LS-SGD in the first 40 epochs, and the
remaining training will be carried out by SGD. The parameter σ is set to 1.0.

Figure: The evolution of the pre-activated ResNet56’s training and
generalization accuracies by SGD and LS-SGD.

28/55

SGD v.s. LS-SGD - ResNet

SGD LS-SGD with σ = 1.0

Figure: The histogram of the generalization accuracies of the
pre-activated ResNet56 on Cifar10 trained with LS-SGD over 25
independent experiments.

29/55

GAN and WGAN

Standard GAN: KL divergence for discriminator loss.
WGAN: Wasserstein distance for discriminator loss.

30/55

WGAN

By Kantorovich-Rubinstein duality, Wasserstein distance between
two probability distributions can be written as

W (Pr ,Pθ) = sup
||f ||L≤1

Ex∼Pr [f (x)]− Ex∼Pθ [f (x)],

where the discriminator network is used to learn the Lipschitz
function f . RMSProp is used typically to train the discriminator.

Arjovsky et al, ICML, 2017

31/55

RMSProp v.s. LS-RMSProp - WGAN

RMSProp LS-RMSProp, σ = 3.0

Figure: Critic Loss with lrD = 0.0001, lrG = 0.005 for RMSProp (Left)
and LS-RMSProp (Right), trained for 20K iterations. We apply a mean
filter of window size 13 for better visualization. The loss from
LS-RMSProp is visibly less noisy.

32/55

RMSProp v.s. LS-RMSProp - WGAN

RMSProp LS-RMSProp, σ = 3.0

Figure: Samples from WGAN trained with RMSProp (left) and
LS-RMSProp (right). The learning rate is set to lrD = 0.0001,
lrG = 0.005 for both RMSProp and LS-RMSProp. The critic is trained
for 5 iterations per every step of the generator, and 200 iterations per
every 500 steps of the generator.

33/55

Reference and Future Work

Ref: Stanley Osher, Bao Wang, Penghang Yin, Xiyang Luo, Minh
Pham and Alex Lin, Laplacian Smoothing Gradient Descent, Arxiv
1806.06317

I Choose σ adaptively on-the-fly.

I Solve tri-diagonal matrix by linear scaling algorithm. And
GPU implementation.

34/55

Deep Learning with Data Dependent Implicit
Activation Functions

Stan Osher’s Group 2

Dept of Math, UCLA

2Thanks to professor Andrea Bertozzi’s group for helping us.
35/55

Deep Neural Network: Coarse Grained Representation

(X,Y)

X̃ = DNN(X,Θ)

Ỹ = Softmax(X̃,W)

Loss(Y, Ỹ)

(X,Y)

X̃ = DNN(X,Θ)

Ỹ = Softmax(X̃,W)

(a) (b)

Figure: Training (a) and testing (b) procedures of DNNs with softmax as
output activation layer.

36/55

Softmax Activation

yi =
ewi ·x∑
j e

wj ·x ,

which is essentially a linear model on the feature space.

I Does not sufficiently utilize the manifold structure of feature
space.

I May not be stable to small perturbation.

We use interpolating function as output activation!

37/55

Manifold Interpolation-Implicit Activation

Let P = {p1,p2, · · · ,pn} be a set of points on a manifold M⊂ Rd with
the labeled subset S = {s1, s2, · · · , sm}.
How to extend the labels of S to P?
Harmonic extension by minimizing the Dirichlet energy:

E(u) =
1

2

∑
x,y∈P

w(x, y) (u(x)− u(y))2
,

with the boundary condition:

u(x) = g(x), x ∈ S ,

The Euler-Lagrange equation for the above energy minimization problem
is: {∑

y∈P (w(x, y) + w(y, x)) (u(x)− u(y)) = 0 x ∈ P/S

u(x) = g(x) x ∈ S ,

We infer the label implicitly!

38/55

Manifold Interpolation-Implicit Activation

How about only tiny amount of data is labeled?


∑

y∈P (w(x, y) + w(y, x)) (u(x)− u(y)) +(
|P|
|S| − 1

)∑
y∈S w(y, x) (u(x)− u(y)) = 0 x ∈ P/S

u(x) = g(x) x ∈ S ,

we use the weighted nonlocal Laplacian (WNLL) instead of the graph
Laplacian (GL)!

Shi et al, JSC, 2017

39/55

Manifold Interpolation-Implicit Activation

How many instances should be labeled at least?

N

(
1 +

1

2
+

1

3
+ · · ·+ 1

N

)
≈ N lnN,

where N is the number of classes in the dataset.

How to find the weight function w?
Approximate nearest neighbor (ANN) searching!

Muja et al, PAMI, 2014.

40/55

Network Structure Design

(X,Y), (Xte,Yte)

(X̃, X̃te) = DNN(X,Xte,Θ)

Ỹ = WNLL(X̃, X̃te,Yte)

Loss(Y, Ỹ)

Figure: WNLL activation - first design.

Error cannot be back propagated, since the WNLL is an
implicit function whose gradient is not explicitly available!

41/55

Network Structure Design

(X,Y), (Xte,Yte)

(X̃, X̃te) = DNN(X,Xte,Θ)

Ỹ = Linear(X̂,WL) Ŷ = WNLL(X̂, X̂te,Yte)

Loss(Ỹ,Y)

(X̂, X̂te) = Buffer(X̃, X̃te,WB)

Loss(Ŷ,Y)

Figure: WNLL activation - second design.

42/55

Network Structure Design

(X,Y), (Xte,Yte)

(X̃, X̃te) = DNN(X,Xte,Θ)

Ỹ = WNLL(X̃, X̃te,Yte)

Figure: Deep Neural Network with WNLL Activation - testing.

43/55

Training Algorithm
Alternating between training linear and WNLL activated DNNs:

(X,Y), (Xte,Yte)

(X̃, X̃te) = DNN(X,Xte,Θ)

Ỹ = Linear(X̂,WL) Ŷ = WNLL(X̂, X̂te,Yte)

Loss(Ỹ,Y)

(X̂, X̂te) = Buffer(X̃, X̃te,WB)

Loss(Ŷ,Y)

Figure: Deep Neural
Network with WNLL
Activation.

Train DNNs with linear activation: Run N1 steps of
forward and back propagation, where in kth iteration:
Forward propagation: The training data X is
transformed, respectively, by DNN, Buffer and Linear
blocks to the predicted labels Ỹ:

Ỹ = Linear(Buffer(DNN(X,Θk−1),Wk−1
B),Wk−1

L).

Then compute loss between the ground truth labels Y
and predicted ones Ỹ, denoted as LLinear.

Backpropagation: Update weights (Θk−1, Wk−1
B ,

Wk−1
L) by gradient descent:

Wk
L = Wk−1

L − γ ∂L
Linear

∂Ỹ
· ∂Ỹ

∂WL
,

Wk
B = Wk−1

B − γ ∂L
Linear

∂Ỹ
· ∂Ỹ

∂X̂
· ∂X̂

∂WB
,

Θk = Θk−1 − γ ∂L
Linear

∂Ỹ
· ∂Ỹ

∂X̂
· ∂X̂

∂X̃
· ∂X̃

∂Θ
.

44/55

Training Algorithm

Alternating between training linear and WNLL activated DNNs:

(X,Y), (Xte,Yte)

(X̃, X̃te) = DNN(X,Xte,Θ)

Ỹ = Linear(X̂,WL) Ŷ = WNLL(X̂, X̂te,Yte)

Loss(Ỹ,Y)

(X̂, X̂te) = Buffer(X̃, X̃te,WB)

Loss(Ŷ,Y)

Figure: Deep
Neural Network
with WNLL
Activation.

Train DNNs with WNLL activation: Run N2 steps of
the following forward and back propagation, where in kth
iteration, we have:
Forward propagation: The training data X, template Xte

and Yte are transformed, respectively, by DNN, Buffer, and
WNLL blocks to get predicted labels Ŷ:

Ŷ = WNLL(Buffer(DNN(X,Θk−1),Wk−1
B), X̂te,Yte).

Then compute loss, LWNLL, between the ground truth
labels Y and predicted ones Ŷ.
Backpropagation: Update weights Wk−1

B only, Wk−1
L and

Θk−1 will be tuned in the next iteration in training DNNs
with linear activation, by gradient descent.

Wk
B = Wk−1

B − γ ∂L
WNLL

∂Ŷ
· ∂Ŷ

∂X̂
· ∂X̂

∂WB

≈Wk−1
B − γ ∂L

Linear

∂Ỹ
· ∂Ỹ

∂X̂
· ∂X̂

∂WB
.

45/55

Theoretical Explanation - I

In training WNLL activated DNNs, the two output activation
functions in the auxiliary networks are, in a sense, each competing
to minimize its own objective where, in equilibrium, the neural nets
can learn better features for both linear and interpolation-based
activations. This in flavor is similar to generative adversarial nets
(GAN).

Goodfellow, et al, NIPS, 2014.

46/55

Theoretical Explanation - II

In the continuum limit, ResNet can be modeled as the following
control problem for a transport equation:{

∂u(x,t)
∂t + v(x, t) · ∇u(x, t) = 0 x ∈ X, t ≥ 0

u(x, 1) = f (x) x ∈ X.
(3)

Here u(·, 0) is the input of the continuum version of ResNet, which
maps the training data to the corresponding label. f (·) is the
terminal value which analogous to the output activation function
in ResNet which maps deep features to the predicted label.
Training ResNet is equivalent to tuning v(·, t), i.e., continuous
version of the weights, s.t. the predicted label f (·) matches that of
the training data. If f (·) is a harmonic extension of u(·, 0), the
corresponding weights v(x, t) would be close to zero. This results
in a simpler model and may generalize better from a model
selection point of view.

47/55

Numerical Results

(a) (b)

Figure: CIFAR image recognition tasks.

48/55

Accuracy of Some Simple Classifiers

Table: Accuracy of some simple classifiers over different datasets

Dataset KNN SVM (RBF Kernel) Softmax WNLL

Cifar10 32.77% (k=5) 57.14% 39.91% 40.73%

MNIST 96.40% (k=1) 97.79% 92.65% 97.74%

SVHN 41.47% (k=1) 70.45% 24.66% 56.17%

49/55

Accuracy Evolution

(a) (b)

(c) (d)

Figure: The evolution of the generation accuracy over the training procedure. Charts (a) and (b) are the
accuracy plots for ResNet50 with 1000 number of data for training, where (a) and (b) are plots for the epoch v.s.
accuracy of vanilla and WNLL activated DNN. Panels (c) and (d) corresponding to the case of 10000 training data
for PreActResNet50. All test are done on Cifar10 dataset.

50/55

Degradation of DNN when Lack of Training Data

(a) (b)

Figure: Taming of the degradation problem of vanilla DNN by WNLL activated
DNN. Panels (a) and (b) plot the generation error for cases when 1000 and
10000 training data is used to train the vanilla and WNLL activated DNN,
respectively. In each plot, we test three different networks: PreActResNet18,
PreActResNet34, and PreActResNet50. It is easy to see that when the vanilla
network becomes deeper, the generation error does not decayed, while WNLL
activation resolves this degeneracy. All tests are done on Cifar10 dataset.

51/55

Performance on CIFAR10
Table: Generalization error rates over the test set of vanilla DNNs, SVM and WNLL activated ones trained over
the entire, the first 10000, and the first 1000 instances of training set of CIFAR10. (Median of 5 independent trials)

Network Whole 10000 1000

Vanilla WNLL SVM Vanilla WNLL Vanilla WNLL

VGG13 6.66% 5.58% 7.47% 9.12% 7.64% 24.85% 22.56%

VGG16 6.72% 5.69% 7.29% 9.01% 7.54% 25.41% 22.23%

VGG19 6.95% 5.92% 7.99% 9.62% 8.09% 25.70% 22.87%

ResNet32 7.99% 5.95% 8.73% 11.18% 8.15% 33.41% 28.78%

ResNet44 7.31% 5.70% 8.67% 10.66% 7.96% 34.58% 27.94%

ResNet56 7.24% 5.61% 8.58% 9.83% 7.61% 37.83% 28.18%

ResNet110 6.41% 4.98% 8.06% 8.91% 7.13% 42.94% 28.29%

ResNet18 6.16% 4.65% 6.00% 8.26% 6.29% 27.02% 22.48%

ResNet34 5.93% 4.26% 6.32% 8.31% 6.11% 26.47% 20.27%

ResNet50 6.24% 4.17% 6.63% 9.64% 6.49% 29.69% 20.19%

PreActResNet18 6.21% 4.74% 6.38% 8.20% 6.61% 27.36% 21.88%

PreActResNet34 6.08% 4.40% 5.88% 8.52% 6.34% 23.56% 19.02%

PreActResNet50 6.05% 4.27% 5.91% 9.18% 6.05% 25.05% 18.61%

52/55

Performance on CIFAR100
Table: Error rate of vanilla DNN v.s. WNLL activated DNN over the
whole Cifar100 dataset. (Median of 5 independent trials)

Network Vanilla DNN WNLL DNN

ResNet20 35.79% 31.53%

ResNet32 32.01% 28.04%

ResNet44 31.07% 26.32%

ResNet56 30.03% 25.36%

ResNet110 28.86% 23.74%

ResNet18 27.57% 22.89%

ResNet34 25.55% 20.78%

ResNet50 25.09% 20.45%

PreActResNet18 28.62% 23.45%

PreActResNet34 26.84% 21.97%

PreActResNet50 25.95% 21.51%
53/55

Summary

I DNN with data dependent implicit activation.

I Back propagate the gradient of harmonic function by linear
function.

I Resolve the degradation problem.

I Relatively 20%-30% accuracy improvement on both CIFAR10
and CIFAR100.

I Reduce the model’s size.

I On going: imageNet challenge: random interpolation.

Ref: B. Wang, X. Luo, Z. Li, W. Zhu, Z. Shi, and S. Osher, Deep
Neural Nets with Interpolating Function as Output Activation,
Arxiv 1802.00168

54/55

Thank you!

55/55

