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Two main topics:

- A theoretical one:
Functional analysis on metric graphs

- An applied one:
Bose-Einstein condensates

Main message: Seeking the ground state of a Bose-Einstein
condensate may lead to some mathematical ideas and to
applications.

Emerging concept: Criticality.
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Outline of the talk

1 Introduction to metric graphs

2 Introduction to Bose-Einstein condensation

3 Critical nonlinearity and critical mass

4 The grid: dimensional crossover
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Metric Graphs

Networks: branched structures with edges and vertices

1. Finite non-compact graphs

1 1

2. Periodic graphs

Metric structure: arclength, functions, functional spaces

Some di↵erential operators
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A function u on G is a collection of functions ue (e is an
edge). Limits, continuity, derivatives are defined naturally

L
p(G) := �eL

p(Ie)

H
1(G) := �eH

1(Ie) plus continuity at vertices

H
1
µ(G) = {u 2 H

1(G) : kuk2
L2(G) = µ}
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The problem

Given a non–compact quantum graph G we investigate the
existence of

global minimizers, or ground states of mass µ

for the energy functional

E (u,G) = 1

2
ku0k2

L2(G)�
1

p
kukp

Lp(G) =
1

2

Z

G
|u0|2 dx� 1

p

Z

G
|u|p dx

Notation:
EG(µ) := inf

v2H1
µ(G)

E (v ,G).
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Kinetic focusing



Euler-Lagrange equations

Any ground state u of E (·,G) satisfies, for some � 2 R,

u
00 + |u|p�2

u = �u on every edge (NLS)

X

e�v

due

dxe
(v) = 0 at every vertex v (Kirchho↵)

The sum involves the derivatives of u at v, in the outgoing
direction, along every edge e emanating from v

The Kirchho↵ condition is the natural condition for u0 at the
vertices of G: if deg(v) = 1, it is the usual Neumann
condition.

Riccardo Adami Towards Bose-Einstein condensation on branched structures: a variational approach




































à

È



The functional aimed at minimizing is the conserved energy of
the focusing NLS

i@tu(t) = ��u(t)� |u(t)|p�2
u(t)

on a metric graph G

1 1

where � is the Kircho↵’s or “free” Laplacian
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Well-posedness is well-known (Ali Mehmeti 94)

Conservation laws of mass

µ =

Z

G
|u|2

and energy

E (u,G) =
1

2

Z

G
|u0|2 � 1

p

Z

G
|u|p

If p < 6, then all solutions are global in time, otherwise there
exist blow up solutions that explode in a finite amount of time.

In the line, the only stationary states are the solitons.
If p < 6, then they are also ground states.
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Bound and Ground states

A bound state is a solution  (x , t) to NLS s.t.

 (x , t) = e
i!t

u(x)

A ground state uGS is a standing waves that minimizes the

energy among the functions with the same mass µ

E (uGS ,G) := min
u2H1

µ(G)
E (u,G )

H
1
µ(G) :=

{u 2 H
1 inside edges,

Z

G
|u|2 = µ, u is continuous at nodes}

uGS is a ground state at mass µ ()
1. EG(µ) := infu2H1

µ
E (u,G) > �1

2. E (uGS) = EG(µ)
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Some physical motivations

Graphs provide
approximations for
dynamics in which
transverse dimensions are
negligible compared to
longitudinal ones.

Spectrum of valence electrons in organic molecules
(Ruedenberg-Scherr 53)
Nanotechnologies (circuits of quantum wires)
Spectra of electromagnetic waves in thin dielectrics
Quantum chaos
Nonlinear e↵ects in branched structures (Von Below ’90s,
Cacciapuoti-Finco-Noja 14, Noja-Pelinovsky-Shaikhova
15, Marzuola-Pelinovsky 15, Gnutzmann-Waltner 15,
Tentarelli 16, Serra-Tentarelli 15, Dovetta 18)
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Bose-Einstein condensates in traps

Ultracold boson gases undergo a phase transition in which all
particles collapse to the same quantum state.

Such a quantum state is represented by the minimizer of the
energy

E (u,⌦) =
1

2
kruk2

L2(⌦) + gkuk4
L4(⌦) + �kuk6

L6(⌦)

where ⌦ is the region occupied by the magneto-optical trap
that confines the condensate.

- The quartic term summarizes the two-body interaction
between the particles of the gas

- The sixth power term summarizes the three-body interaction
between the particles in the gas.
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From the two-body interaction to the quartic term

1. Denoting V the two-body interaction potential, a particle
feels any other in the state  by the e↵ective potential

Ve(t, x) =

Z

⌦

V (x � y)| (t, y)|2 dy

2. After the transition, the wave function spreads all over the
(physically) admissible domain, so that V can be considered as
a Dirac’s delta and

Ve(t, x) =

✓Z
V

◆
| (t, x)|2

3. The Schrödinger equation for the first particle (in the same
state  ) then becomes

i@t (t, x) = �� (t, x) +

✓Z
V

◆
| (t, x)|2 (t, x)
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4. The associated conserved energy reads

E ( (t)) =
1

2
kr (t)k22 +

✓Z
V

◆
k (t)k44

5. The actual deduction of the energy is extremely more
involved: Bogoliubov ’50s, Gross 61, Pitaevskii 63,
Lieb-Seiringer-Solovej-Yngvason ’00s, A.-Golse-Teta 07,
Erdős-Schlein-Yau 07-10, Benedikter-De Oliveira-Porta-Schlein
14.

In particular, the right coupling constant is not
R
V .

6. A highly non-trivial physical mechanism, called Feshbach
resonance allows tuning the coupling constant.
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Bose-Einstein condensates, nonlinearity, networks

In most cases, only the quartic term is considered.

However, several nonlinearity powers have physical meaning.

The nonlinearity can be either focusing (positive sign) or
defocusing (negative sign). We restrict to the focusing case.

Furthermore, we allow nonlinearity with an arbitrary power.

There exist quasi one-dimensional (cigar-shaped) condensates
and ramified condensates (Vidal-Lima-Lyra 11, Lorenzo et al.
14), for which the minimization problem is related to ours.
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Mathematical and physical breakthrough:

Criticality - 0

Consider G = R and the mass-preserving transformation

u�(x) =
p
�u(�x).

Then,

E (u�,G) =
�2

2

Z
|u0|2 � �

p

2�1

p

Z
|u|p

so that

If p < 6 then the kinetic energy overwhelms the potential
term.

If p = 6 then the two terms scale in the same way.

If p > 6 then the potential prevails

More generally, in all graphs with a half-line the
one-dimensional Gagliardo-Nirenberg inequalities hold.
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Criticality - I

Gagliardo-Nirenberg inequalities:
Z

|u|p  Cp µ
p

4+
1
2

✓Z
|u0|2

◆ p

4�
1
2

=) E (u,G) � 1

2

Z
|u0|2 � Cp

p
µ

p

4+
1
2

✓Z
|u0|2

◆ p

4�
1
2

If p < 6, then E is lower bounded
If p = 6, (critical power) then

E (u,G) �
✓
1

2
� C6

6
µ2

◆Z
|u0|2

so that there exists a critical mass under which all states
have positive energy.
If p > 6 no relevant information is provided, however the
functional is not lower bounded
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Subcritical, critical and supercritical nonlinearity

According to the di↵erent phenomenology, nonlinearity powers
are classified as:

1 Subcritical: 2 < p < 6.

2 Critical: p = 6.

3 Supercritical: p > 6.

Results are expected to vary sensitively as p crosses 6.
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Subcritical case on the line

(Zakharov-Shabat 72, Cazenave-Lions 82)
For p 2 (2, 6) and every µ > 0 ground states exist and are the
translates of the soliton

�µ(x) = Cµ
2

6�p sech
2

p�2 (cµ
p�2
6�p x).

�µ

Solitons have negative energy
When p = 4 (cubic NLS)

�µ(x) =
µ

2
p
2
sech

⇣µ
4
x

⌘
, ER(µ) = �µ3

96

Solitons are orbitally stable
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Critical case in the line

Let p = 6.

Denoted µR = ⇡
p
3/2,

ER(µ) =
(
�1 if µ > µR

0 if µ  µR

Ground states only for µ = µR and ER(µR) = 0
They are

��(x) =
p
��(�x), � > 0,

where �(x) = sech
1/2( 2p

3
x).

The dynamical problem is globally well-posed for all initial
data with µ < µR, while for µ � µR blow up arises

Stationary solutions are orbitally unstable
Riccardo Adami Towards Bose-Einstein condensation on branched structures: a variational approach



The appearance of the critical mass

In the critical case p = 6, the value µR = ⇡
p
3/2 marks two

sudden transitions:

Reached from below, µR marks the transition from
nonexistence to existence of ground states.

Reached from above, µR marks the transition from lower
boundedness to non-lower boundedness.

One gives to this value the name of critical mass.

Its appearence can be easily explained by using
Gagliardo-Nirenberg inequality and the behaviour of E under
mass-preserving transformation:

E (u�,R) = �2E (u,R)
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Subcritical case for graphs with a halfline

(A.-Serra-Tilli 15-17)

1

1

1 1

1

- Let p < 6. Fix a mass µ > 0

- Halflines host quasi-solitons approximating solitons

- The compact core of the graph possibly hosts bound states.

- If a bound state based on the compact core does better than
the soliton, then a ground state at mass µ exists.

- The existence or nonexistence of a ground state results from
a competition between halfilnes and compact core
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Critical case for graphs with a halfline

(A.-Serra-Tilli 17) Let G be a graph with exactly one halfline.
Then there exist

1

- A lower critical mass µ�
G = µR/2 s.t. if µ < µ�

G , then
EG(µ) = 0 and a ground state does not exist.

- A upper critical mass µ+
G = µR s.t. if µ > µ+

G , then
EG(µ) = �1.

- For µ�
G < µ  µ+

G , a ground state with negative energy
exists.

Some class of graphs with more than one halfline behaves
similarly

Graphs distinguish the two roles of the critical mass
Riccardo Adami Towards Bose-Einstein condensation on branched structures: a variational approach
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Criticality - II

1. In prevuois cases, the critical power pc (= 6) yields:
1 If p < pc , then �1 < EG(µ) < 0
2 If p > pc , then EG(µ) = �1 for every µ

2. For G = R, a critical mass µR s.t. at critical power:
1 If µ < µR, then ER(µ) = 0 is not attained
2 If µ > µR, then ER(µ) = �1

3. For a class of graphs made of a compact core and some
haflines, two critical masses µ�

G , µ
+
G s.t.

1 If µ < µ�
G , then E (u,G) > 0 and EG(µ) = 0

2 If µ > µ+
G , then the constrained energy is not lower

bounded.

The grid splits the two roles of the critical power
Riccardo Adami Towards Bose-Einstein condensation on branched structures: a variational approach



The two-dimensional grid

- Macroscale: G ! R2. Critical exponent: p = 4

- Microscale: G ! R. Critical exponent: p = 6

In the middle?
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Grid: preliminaries

1. Quasi-solitons are not available since there are no halflines

2. The only competitor to ground state is ”spreading along
the grid”, reaching zero energy.

3. Therefore, if there is a function with negative energy, then
there exists a ground state.

For instance, let µ > 0.

u"(x) :=

(p
µ n" e

�"(|x |+|k|) if x 2 Vkp
µ n" e

�"(|x |+|h|) if x 2 Hh

, � 2 R+, " > 0

where Vk is the k.th vertical line and Hh the h.th horizontal
line,

n" =

r
"

2

e2" � 1

e2" + 1
,

Z

G
|u"|2 = µ
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Z

G
|u0

"|2 = "2µ

Z

G
|u"|p =

4µ
p

2 n
p

"

p"

⇣
e
p" + 1

ep" � 1

⌘
⇠ 23�

p

2

p2
µ

p

2 "p�2

Thus

E (u",G) = � 23�
p

2

p3
µ

p

2 "p�2 + o("p�2), "! 0.

Therefore, choosing " small enough one gets E (u,G1) < 0 and
then there exists a ground state provided that p < 4!

(Two-dimensional e↵ect!)
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Gagliardo-Nirenberg inequalities

1. One-dimensional Gagliardo-Nirenberg inequality
Z

|u|p  Cp µ
p

4+
1
2

✓Z
|u0|2

◆ p

4�
1
2

holds for every graph

2. Two-dimensional Gagliardo-Nirenberg inequality
Z

|u|p  Mp µ

✓Z
|u0|2

◆ p

2�1

Quite astonishingly, both hold in the grid!

Then, by interpolation, for every 4  p  6
Z

|u|p  Kp µ
p

2�1

Z
|u0|2
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Thus for every 4  p  6

E (u,G) � 1

2

✓
1� Kp

p
µ

p

2�1

◆Z
|u0|2

That show the occurrence of a critical mass µp below which
energy is always positive

However, if p < 6, then for µ > µp energy remains lower
bounded, since, according to 1D Gagliardo-Nirenberg
inequality, for every u 2 H

1
µ(G)

E (u,G) � 1

2

Z
|u0|2 � Cp

p
µ

p

4+
1
2

✓Z
|u0|2

◆ p

4�
1
2
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We finally obtain

Theorem (Dimensional Crossover)

For every 4  p  6 there exists a critical mass µp > 0 s.t.

(i) if p = 4 then ground states exist if µ > µ4 and do not

exist if µ < µ4.

(ii) if 4 < p < 6 then ground states exist if and only if µ � µp

(iii) if p = 6 then ground states never exist. Furthermore,

inf
u2H1

µ(G)
E (u,G) =

(
0 if µ  µ6

�1 if µ > µ6
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Final remarks and open questions

We showed that the grid graph distinguishes two features of
the critical power, i.e. the fact of being

1. the maximal power below which EG(µ) < 0 for every µ

2. the minimal power over which EG(µ) = �1 for every µ

Many issues are to be investigated, for instance:

· µ = µ4 ?

· excited states and their stability

· Reconstructing R2 as a more and more dense grid

· N-dimensional grid with N > 2

· Other periodic graphs
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...and the Physics?

The (few) experiments on Bose-Einstein condensates on
branched structures show that the role of the junction can be
crucial in a way that is not modelable by Kirchho↵ conditions.

In our language, the functional to be minimized could remain
the same, but the domain should change!. We are currently
working on that.
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