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space weather

space weather results from a sophisticated interplay of different scientific disciplines
with the aim of understanding and predicting the connection between the solar activity

and the physical conditions throughout the interplanetary space
down into the planets’ atmosphere

space weather is challenging for physics because the dynamics of the solar atmosphere is
poorly known and its comprehension is crucial for unveiling what happens

in more remote and more mysterious astrophysical objects

space weather is challenging for mathematics because up-to-date models involve
difficult PDEs and because the remoteness of the information source implies

ill-posedness in the sense of hadamard

space weather is timely because the quantity and quality of data we will have at disposal
in the next decade will be overwhelming
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solar flares

extend over 10, 000 km

release more than 1032 erg in less than
100 s

accelerate billions of tons of material
to more than 106 km/h

emit electromagnetic radiation at all
wavelengths

trigger the whole space weather
connection
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the flare paradox

inductance: 10−6 henry

voltage: 220 volt

light-up time (predicted): 10−9 s

light-up time (observed): instantaneous

inductance: 10 henry

voltage: 106 volt

light-up time (predicted): 3× 105 years

light-up time (observed): no more than some
minutes
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industry 4.0 in space
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outline of the talk

flares and math:

artificial intelligence and flare prediction:

I pattern recognition extracts features from the experimental data
I machine learning utilizes the extracted features for binary prediction
I regularization networks compute the feature impact to forecast
I multi-task learning allows the prediction of flare-related parameters

inverse problems and flare morphology reconstruction

I space telescopes provide indirect signatures of the flaring topography
I inverse problems methods realize the transition from remote sensing to

physically meaningful images

inverse problems and MHD-based flare modeling

I MHD combines maxwell’s equations and navier-stokes equation in
extreme thermodynamical conditions

I MHD-based models of solar flares can be calibrated by using
optimization of inverse problems
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AR 12673

data: helioseismic and magnetic imager in the solar dynamics observatory (SDO/HMI)

flares originate from active regions (ARs)

just a few ARs originate flare

SDO/HMI provides vector magnetograms every
12 minutes, with clearly visible ARs

on august 30 2017 AR 12673 became visible on
a full disk HMI magnetogram. would it be
possible to predict the flare occurrence from it?
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supervised machine learning

ingredients:

a historical data set (e.g.: a set of magnetograms in the HMI archive)

a feature set extracted by pattern recognition from each element of the historical
data set (e.g.: image features extracted from ARs in HMI magnetograms)

a set of labels, each one associated to a feature set and encoding the outcome
information (e.g.: a label testifying the flare occurrence and intensity)

a machine learning method

the supervised scheme:

1 the machine learning method is trained by means of the historical (training) set
and the corresponding set of labels

2 a new data arrives (e.g.: a new magnetogram)

1 the pattern recognition method extracts the features from it
2 the machine learning method predicts the outcome corresponding to

the new feature set (e.g.: will the flare occur within a given time
range?)
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training set and labels

historical set: full-disk HMI magnetograms in the time range 2012-2016 with 6
hour cadence (i.e., 4× 365× 5 = 7300 images)

20 features extracted from each AR by means of segmentation and other image
processing methods (i.e., more than 7300 feature vector of dimension 20)

labels: binary + a number indicating the class associated to the flare intensity (C,
M, X)
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hybrid LASSO (benvenuto, p, campi and massone, ApJ, 2018)

for each flare class

phase 1: training (LASSO)

X ∈ RN×F y ∈ RN×1 β ∈ RF×1

β̂ = arg min
β

(‖y − Xβ‖2
2 + λ‖β‖1)

phase 2: prediction (fuzzy clustering)

ŷ = X β̂

U ∈ R2×N ujk ∈ [01, ] z = {zj |zj ∈ R , j = 1, 2} djk = djk(z , ŷ)

(ẑ , Û) = arg min
(z,U)

N∑
k=1

2∑
j=1

(ujk)md2
jk

when xnew arrives, x t
new β̂ is compared to ẑ1 and ẑ2

in order to decide the cluster to which it belongs
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in order to decide the cluster to which it belongs



introduction prediction morphology physics

the september 2017 super-storm
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flare morphology
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the extreme ultraviolet sun

data: atmospheric imaging assembly in the solar dynamics observatory (SDO/AIA)

good news: SDO/AIA provides

7 full disk 4096× 4096 pixel resolution images every 12
second

in 7 different wavelength (extreme ultraviolet, EUV)

with the best spatial resolution ever

bad news: more than 105

images per year are
affected by

diffraction

saturation

blooming
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saturation, blooming, diffraction

primary saturation: some pixels reach the full well
capacity, i.e. they store the maximum number
possible of photon-induced electrons

blooming: at saturation, pixels lose their ability to
accommodate additional charge, which spreads into
neighboring pixels, causing second-order saturation.
such spread of charge typically shows up as a bright
artifact along a privileged axis in the image

diffraction: telescope hardware generates
diffraction fringes proportional to the incoming
radiation intensity

all information on the radiation flux lost due to primary saturation is actually
present in the diffraction pattern and therefore the signal in the primary saturation

region can be restored by solving an inverse diffraction problem
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point spread function (PSF)

image formation process:

A : L2(R2)→ L2(R2) (Af )(x , y) =

∫
R2

K(x − x ′; y − y ′)f (x ′, y ′)dx ′dy ′

I (x , y) = (Af )(x , y) (x , y) ∈ R2

finite-dimensional setting:
I = Af

f is a vector of size N representing the incoming radiation field

I is a vector of size N representing the signal recorded from the CCD

A is a N × N circulant matrix associated to the PSF

A = AD + AC where

I AD diffraction component =⇒
I AC diffusion component
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de-saturation problem

ingredients:

N set of pixels (known)

SP set of pixels where primary saturation occurred (unknown)

B set of pixels where blooming occurred (unknown)

S = SP ∪ B set of saturated pixels (known)

FP (FP ∩ S = ∅) set of pixels corresponding to the diffraction fringes (unknown)

fP radiation field in SP (unknown)

fS radiation field in S (unknown)

BG total background (unknown)

the problem: reconstruction of an image Idesat where information in SP and B are
recovered and where diffraction fringes in FP are removed
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inverse diffraction: mathematical setup

F = {i 6∈ S , (ADχS)i 6= 0} F ⊃ FP IF = {Ii , i ∈ F}
AS

D : R]S → R]F

IF = AS
D fS + BGF

note 1: to estimate the background BGF , use interpolation of the non-saturated images
just before and just after the saturated one

note 2: we are assuming that diffraction effects associated to pixels out of the primary
saturation region are negligible
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inverse diffraction: expectation maximization (EM)

IF = AS
D fS + BGF

p(IF |fS) =

]F∏
i=1

e−(AS
D fS+BGF )i

(IF )i !
(AS

D fS + BGF )
(IF )i
i

max
fS≥0

p(IF |fS)

theorem (KKT):

fS = fS(AS
D)T

(
IF

AS
D fS + BGF

)
algorithm (EM):

f
(k+1)
S =

f
(k)
S

AD1
(AS

D)T
(

IF

AS
D f

(k)
S + BGF

)
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inverse diffraction: stopping rule

f
(k+1)
S =

f
(k)
S

AD1
(AS

D)T
(

IF

AS
D f

(k)
S + BGF

)

f
(k)
S → 0 or α(k) :=

(AS
D)T

(
IF

AS
D
f

(k)
S

+BGF

)
AS

D1
→ 1

z (k) := ‖f (k)
S (AS

D)T
(

1− IF

AS
D f

(k)
S + BGF

)
‖2 → 0

theorem (torre, schwartz, benvenuto, massone and p, inverse problems, 2015): the rule
z (k) = E(z (k)) is a regularization algorithm in both the classical and the asymptotical
sense



introduction prediction morphology physics

inverse diffraction: stopping rule

f
(k+1)
S =

f
(k)
S

AD1
(AS

D)T
(

IF

AS
D f

(k)
S + BGF

)

f
(k)
S → 0 or α(k) :=

(AS
D)T

(
IF

AS
D
f

(k)
S

+BGF

)
AS

D1
→ 1

z (k) := ‖f (k)
S (AS

D)T
(

1− IF

AS
D f

(k)
S + BGF

)
‖2 → 0

theorem (torre, schwartz, benvenuto, massone and p, inverse problems, 2015): the rule
z (k) = E(z (k)) is a regularization algorithm in both the classical and the asymptotical
sense



introduction prediction morphology physics

inverse diffraction: stopping rule

f
(k+1)
S =

f
(k)
S

AD1
(AS

D)T
(

IF

AS
D f

(k)
S + BGF

)

f
(k)
S → 0 or α(k) :=

(AS
D)T

(
IF

AS
D
f

(k)
S

+BGF

)
AS

D1
→ 1

z (k) := ‖f (k)
S (AS

D)T
(

1− IF

AS
D f

(k)
S + BGF

)
‖2 → 0

theorem (torre, schwartz, benvenuto, massone and p, inverse problems, 2015): the rule
z (k) = E(z (k)) is a regularization algorithm in both the classical and the asymptotical
sense



introduction prediction morphology physics

inverse diffraction: stopping rule

f
(k+1)
S =

f
(k)
S

AD1
(AS

D)T
(

IF

AS
D f

(k)
S + BGF

)

f
(k)
S → 0 or α(k) :=

(AS
D)T

(
IF

AS
D
f

(k)
S

+BGF

)
AS

D1
→ 1

z (k) := ‖f (k)
S (AS

D)T
(

1− IF

AS
D f

(k)
S + BGF

)
‖2 → 0

theorem (torre, schwartz, benvenuto, massone and p, inverse problems, 2015): the rule
z (k) = E(z (k)) is a regularization algorithm in both the classical and the asymptotical
sense



introduction prediction morphology physics

segmentation

S is known and fS has been determined as described ⇒ the image is segmented in three
regions:

primary saturation:

SP is the set of pixels where AS
C fS is

above the saturation threshold

fP = {(fS)i , i ∈ SP}
IP = {(AS

C fS)i , i ∈ SP}
with AS

C sub-matrix of AC restricted to S

blooming:

B = S \ SP

BGB sub-matrix of BG restricted to B

diffraction fringes:

FP = {i ∈ N , (ADχSP )i 6= 0}

ASP
D sub-matrix of AD s.t.

ASP
D : R]SP → R]FP

IFP = I�FP − ASP
D fP
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de-saturated image

the solution of the de-saturation problem is:

Idesat =


IP in SP

BGB in B
IFP in FP

I otherwise
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september 6, 2011 - 131 Å
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flare physics
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physics interlude

∂F (E ; s)

∂s
+

∂

∂E

(
F (E , s)

dE

ds

)
= S(E , s)

physics is in the electrons and its most direct signature is in (hard) X-rays
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visibilities

data: reuven ramaty high energy solar spectroscopic imager (RHESSI)

it is difficult to focus hard X-rays

it is easier to modulate them

rotating modulation collimators sample fourier components of the radiation flux
named visibilities

V (uj , vj ; ε) =

∫ ∫
f (x , y ; ε)e2πi(xuj+yvj )dxdy j = 1, . . . ,N

the image reconstruction problem is a
fourier inversion problem with limited data

compressed sensing is the way
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compressed sensing

in order for compressed sensing to work you need

a sparse representation of the solution of the image reconstruction problem. this

can be done by either

I chasing for sparsity with respect to a catalogue of pre-defined image
shapes (felix et al, astrophys. j., 2017)

or

I chasing for sparsity with respect to a wavelet representation of the
solution

incoherence between the sampling domain and the sparsity-promoting domain.

note that

I the fourier domain in incoherent with respect to both the space and
wavelet domains
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finite isotropic wavelet transform

given ψM(x) the 1D meyer mother function, the finite isotropic wavelet transform of
f ∈ L2(R2) is

ψ̂a,t(u, v) = a1/2ψ̂M

(
a
√

u2 + v 2e−2πi(u,v)·t
)

given φM(x) the 1D meyer scaling function, the whole (u, v) is spanned by adding

φ̂(u, v) = φ̂M(
√

u2 + v 2)

the finite isotropic wavelet transform of f is

W(f )(a, t) = a1/2F−1
(
f̂ (u, v)ψ̂M(a

√
u2 + v 2)

)
(t)

theorem (duval poo, massone and piana, IEEE SampTA, 2017): the discretization of the
functions ψa,t(x , y) and φ(x , y) provides a parseval frame
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finite isotropic wavelet transform
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VIS WV (duval poo, piana and massone, astron. astrophys., in press)

given the image reconstruction problem

H · Ff = V

the VISibility-based finite isotropic WaVelet transform compressed sensing (VIS WV)
addresses the optimization problem

min
f

{
‖H · Ff − v‖2

2 + λ‖Wf‖1

}
(1)

computational aspects:

the minimum problem is solved by means of the fast iterative
shrinkage-thesholding algorithm (FISTA) (beck and teboulle 2009)

the reconstruction is robust with respect to the choice of the regularization
parameter
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july 23 2002: reconstruction vs energy
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july 23 2002: reconstruction vs time
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bremsstrahlung

E : electron energy
ε: photon (X-ray) energy
Q(ε,E): bremsstrahlung cross-section
g(ε; x , y): X-ray spectrum at point (x , y) (i.e., grey level of pixel (x , y) in the
reconstructed X-ray image at all energies ε)
F (E ; (x , y)): electron spectrum at corresponding point (x , y) on the sun

g(ε; x , y) =

∫ ∞
0

Q(ε,E)F (E ; x , y)dE
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commuting operators

A : L1(R2, L2(0,∞))→ L1(R2, L2(0,∞)) AF : (x , y)→
∫ ∞

0

Q(·,E)F (E ; x , y)dE

Â : L1(R2, L2(0,∞))→ L1(R2, L2(0,∞)) ÂF : (u, v)→
∫ ∞

0

Q(·,E)F (E ; u, v)dE

F : L1(R2, L2(0,∞))→ L1(R2, L2(0,∞)) FF : (u, v)→
∫
R2

F (·; x , y)e2πi(ux+vy)dxdy

theorem (prato, p, emslie, hurford, kontar and massone, SIAM j. imag. sci., 2009):

FA = ÂF

therefore, if

W (u, v ;E) :=

∫
R2

F (E ; x , y)e−2πi(ux+vy)dxdy

defines the (virtual) electron visibilities, then

V (u, v ; ε) =

∫ ∞
0

Q(ε,E)W (u, v ;E)dE
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electron maps

V (u, v ; ε) =

∫ ∞
0

Q(ε,E)W (u, v ;E)dE

algorithm:

1 for each (u, v) in the frequency (experimental) domain, regularized spectral
inversion provides an electron visibility spectrum

2 for each electron energy E, re-ordering and compressed sensing provides an
electron maps
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february 20 2002 event: photon maps
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february 20 2002 event: electron maps
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model calibration

∂F (E ; s)

∂s
+

∂

∂E

(
F (E , s)

dE

ds

)
= S(E , s)
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in progress - flare prediction

use space data in order to

characterize the physical properties of the predicted flare

determine which extracted features most impact the prediction effectiveness
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in progress - image reconstruction

new telescopes upcoming:

ESA

launch: 2019 or 2020

visibilities

fourier-based methods

NASA

phase b

focused-based optics

fredholm integral equation
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credits

thanks to:

anna maria massone (UNIGE and CNR): hard X-ray
spectroscopy, imaging, imaging spectroscopy;
de-saturation of EUV images; flare prediction; co-I for
STIX and FOXSI

federico benvenuto (UNIGE): hard X-ray imaging;
de-saturation of EUV images; flare prediction

cristina campi (UNIPD): flare prediction

alberto sorrentino, miguel duval-poo, federica
sciacchitano (UNIGE): hard X-ray imaging

sabrina guastavino (UNIGE): flare prediction;
de-saturation of EUV images
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